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1 Introduction

The criterion of FITness was proposed a few years ago as an appropriate boundary between theories
that are observationally testable and theories that are not [Simon and Groen. 1973]. The basic
(Popperian) idea is that a theory. if false. should be disconfirmable by a finite set of observations
(i.e. should be finitely testable). and the theory, if disconfirmed by a set of observations, should be
disconfirmed by any superset of those observations (i.e. should be irrevocably testable). Later. the
definition of FITness was revised slightly to clarify a number of ambiguities and problems in the
earlier formulation [Simon. 19S3]. Still more recently it has been shown [Simon, 1985] that theories
with existentially quantified theoretical terms may be falsifiable according to the FITness criterion.

The papers reporting these results provided a number of examples of FIT theories that contain
theoretical terms. but they did not explore the varieties of terms that might be so accommodated. In
the present paper. we will be concerned with a class of theoretical terms. which we will call recur-silf.
whose values are inferred from observations of the history of the system under observation. None
of the examples previously published contains terms of this kind.

It is the purpose of the paper to analyze the nature of recursive theoretical terms. to determine
whether they can be Ramsey-eliminable from theories and whether a theory containing such terms
can still be falsifiable. It will turn out that the answers to both questions are affirmative. We
will first review examples of theories containing theoretical terms that are not recursive in the
above sense, next introduce more formally the idea of recursivity of terms. and then show their
implications for FITness.

2 Theoretical Terms

We start by reviewing briefly several examples of theories containing theoretical terms that are
already familiar [Simon. 1985].

First, consider the hydrostatic equilibrium of an incompressible liquid in a constant gravitational
field in one (vertical) dimelksion. At each observation i. let z measure the distance downward from
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the surface of the liquid, and let p ), the pressure in excess of atmospheric pressure. be the only
other observable. Then we postulate:

3rVipi = rxi. (1)

In this theory. r is not observable, thus is a theoretical term. In particular. r is a constant,
for its value, the ratio of pi to xi. does not depend on observation i. As shown in [Simon. 1983],
theoretical terms like r are eliminable. For after we have made a single observation t. we can use
the value pt/xt to replace r. So the theory can be rewritten in terms of observables as follows:

Vipi = (pt/zt)xi. (2)

Moreover, as shown in [Simon. 1985]. theories like (1) can be characterized as FIT, hence they are
falsifiable by finite sets of observations.

Now we complicate the example by replacing the liquid with a perfect gas, having a pressure
at the upper boundary of p(O). The theory now becomes:

Vi[dp/dz]j = ri (the derivative to be evaluated for z = zi) (3)

EkVir, = kpi (4)

Assume that the only observables are z. the depth of the gas, and p(z), the pressure at z, so
that both ri and k in theory (4) are theoretical terms and pi is the only observable appearing in
the formula. Theory (4) is slightly more complicated than theory (1) because theoretical terms r
and k are mutually dependent. In particular. we have to calculate the value of k before we can
calculate ri, because the differential equation (replacing ri in (3) by (4).)

dp/dx = kp (5)

gives the value k = [hn(p 1/po)]/z. and now the r, can be obtained from (4).
From this example. we can see that a theory can contain, in addition to the observables. theo-

retical terms that depend on other theoretical terms. However. in the example the vwhio of those
latter terms are still independent of which observation is used to calculate k.

3 Recursive Terms in Mendelian Genetics

We are now ready to consider a theory that contains recursive theoretical terms, specifically. the
theory of gene inheritance originated by Mendel [1865]. We will make use of a formulation of
the Mendelian theory that was induced automatically from data by the LIVE computer program
[Shen. 1989]. The theoretical terms, the genes. in this theory are recursive because their values
change from one generation to another as a function of the values in the previous generation. Using
the breeding of plants to compute the terms, these values depend on the measurement (breeding
experiment) performed on the plant.

Let us describe some details of Mendel's experiments before we propose the theory. Mendel's
experiments consisted of a series of breeding operations and observations on garden peas. The
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breeding opermions are of two kinds: (1) inbreeding, in which both pistil and stamen (hence both
genes) are on the same plant; and (2) crossbreeding, in which pollen from one plant is used to
fertilize the ovum on another. We associate the flowers on each pea plant with the pea it grew
from. The theory assumes that all flowers on a plant have the same genetic constitution. (In the
case of peas. since the flowers are bisexual. inbreeding can be accomplished by fertilizing the ovum
with pollen from the same flower.) The genetic constitution of the peas produced from a flower's
pistils will depend upon the genetic constitutions both of the flower itself and of the flower that
produced the pollen that fertilized it.

The peas are classified according to their observable features. For example, peas of one class
may be green and have wrinkles, and of another class may be yellow and have long stems. The
experiments start with a set of purebred peas that have been inbred for a number of generations
until all of them continue to exhibit consistently the same observable features. Mendel hybridized
these purebred peas by crossbreeding. and observed the outcomes for several generations. The
experiments were very well controlled so that the characteristics of each seed pod were determined
by the genes of its known parents, and not by any other factors such as weather, temperature. etc.

In formalizing Mendel's theory for the purposes of this paper. we assume that the color of the
peas is the only obqervable. The color green will be represented as 1 and yellow as 0. We alto
assume that green color dominates yellow, that is, if a pea has both a green gene and a yellow gene,
then its color will be green.

Further. in order to avoid irrelevant statistical and probabilistic issues in our formulation of the
theory, we assume that a single breeding. whether inbreeding or crossbreeding, will produce exactly
four offspring, one for each possible pairing of genes. By this assumption we replace probability
distributions of different genotypes and phenotypes with exact numbers that correspond to the
expected values. The specific questions we wish to examine can be answered in this deterministic
model as definitively as in a more realistic probabilistic model, and far more simply.

Let (P, c m f) represent a pea plant. where P is the pea's identifier. c is its color and m and f
its genes that determine color. Each of the variables c. m and f. can assume the value I (green) or
0 (yellow). Let AF[P. Pj] represent a single inbreeding or crossbreeding of peas in generation i to
produce four peas in generation i+ 1. Then Mendels experiments can be summarized as in Table 1.
For example, the green pea (P111) and yellow pea (P8 000) produce four offspring P21. P 2. P23.
and P24: they are all green in color (although their genes are different). For each generation. we
have illustrated the various types of matings and offspring that are possible.

More formally, a theory about gene inheritance is postulated as follows. Let the expression
(cab) represent a pea with color c, and genes a and b, and with its identifier unspecified. Let the
expression (ab) represent a pea with genes a and b, and with its observable color unspecified. Then
each breeding of two (identical or non-identical) peas produces four offspring, according to the rule:

AF[(zy),(wZ)] * [(zw),(zz),(yu,),(y-)] (6)

Color(11) = Color(10) = Color(01) = 1 (7)

Color(OO) = 0 (8)

This set of equations says that any pair of peas, P and Pt, possesses four genes x.y. u.z
such that the genes of the children are evenly obtained from them. and the colors of children are
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ist Generation (purebreds)

(P 000).(P 2 000).(P 3 111),(P 4 111).(P000).(P 6111)1P 111),(P 8 000).

2nd Generation
AF[(PI 000), (P2 000)] =- [(P 9 000). (Po 000). (P 11 000). (P12 000)]
AF[(P3 111).(P 4 111)] =- [(P 3 111 ).(P 4 111),(P 111),(P 6 111)]
AF[(P50OOO),(P6 111)] [(P17 101),(P18 I01),(P19 101),(P2o i01)]
AF[(P- 111), (Pr,000)] [(P21 110). (P22 110), (P23 110)-(P2411i0)]

3rd Generation
AF[(P9 000)- (PIO 000)] ==> [(P 2 5 000). (P 26 00), (P 27 000). (P 28 000)]

AF(P 13 I11). (P 4 111)] = [(P2 111). (P30 11), (P 31 111), (P 3 2 111 )
AF[(P17 101)(P18 101)] =[(-P33 000). (P34 101). (P35 110)(P36 111)]
AF[(P21 110). (P22 110)] =,[(P37 111), (P38 110), (P39 101)-.(P40 000)]

4th Generation
AF[(P33 000) (P 4o 000)] [(P41 000). (P 4 2 000). (P 4 3 000)- (P 44 000)]

AF[(P 3 4 101).(P 3 8 110)]= [(P45 101),(P 46 000),(P 47 111),(P 48 110)]
AF[(P 35 110).(P 39 101)]= [(P49 110).(P 50 111).(P 51 000)-(PS2 101)]
AF[(P36 111) (P37 111)] = [(P3 111) (PS4 111). (P55 111). (P6 111)]

Table 1: Mendel's pea experiments.
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determined. by the pairs of genes that they get and by a function called Color.
Notice that in this theory. the genes are not observable: they are theoretical terms. However.

they differ from the theoretical terms r and k in the previous theories because their values depend
on the values of their parents' terms and change from one generation to another. For example. a
green pea in generation i may have both its genes green, but a green pea in the next generation
i + 1 may have one gene green and the other yellow. Because the values of these terms depend on
the values in earlier generations. we call them "recursive theoretical terms.-

4 Eliminability and Falsifiability

Theoretical terms like r in (1) and k in (4) can be eliminated by estimating their values, directly
or indirectly, from observations. For theories that contain recursive theoretical terms, the situation
may become more complicated. The values of the theoretical terms are generally different for
different objects, and inferring these values may require noting the values of the observable terms
for other. related, objects. By observing only that a pea is green. it cannot be determined whether
it is a purebred or hybrid. And even after we see that breeding two particular green peas produces
four green offspring, we cannot conclude that both parents are purebreds.

In spite of these complications, the Mendelian theory given by (6) is FIT. Moreover. the theo-
retical terms are eliinable. although it is not always possible to distinguish between a pea that is
(110) and one that is (101) (i.e.. the theoretical terms are not completely identifiable).

By definition [Simon and Groen, 1973] and [Simon, 1983], a scientific theory is FIT iff:

1. The theory. if false. could be disconfirmed by a finite set of observations (i.e.. is finitely
testable).

2. The theory. if disconfirmed by a set of observations, would be disconfirmed by any superset
of those observations (i.e.. is irrevocably testable).

In our Mendelian theory, the simplest possibilities for disconfirmation arise from observing the
outcomes of inbreeding experiments. If the plant to be self-fertilized derives from a yellow pea.
then the theory implies that all of its genes are yellow, thus all four offspring must be yellow: if
not, the theory is disconfirmed. If the plant derives from a green pea. then either all four offspring
must be green. or three must be green and one yellow: else the theory is disconfirmed. Further. in
the latter case, in the next generation of inbreeding of the three green offspring, one must produce
only green peas, the other two must produce three green peas and one yellow pea.

These conclusions, which can be derived from the formal theory. can be written as follows (we
modify the notation to emphasize that only the color is observed, not the genes.)

AF[(yoo),(yoo)] [(yOO).(yOO),(yoo). (yoo)]

AF[(gll).(gll)] * [(gll),(gll),(gll).(gll)]or

AF[(glO).(glO)] * [(gll),(glO).(gO1),(yOO)]

Crossbreeding experiments also offer possibilities for disconfirmation. Crossbreeding two yellow
peas must always yield yellow offspring: but crossbreeding two green peas or a yellow and a green



can produce sveral poesible results. For example, with two green peas. we can observe four green
progeny or three green and one yellow. In the latter case. we can infer that both parents were
hybrids. In the former case, one or both were purebred. but we must look at the ratio for the
third generation to determine which is the case (all progeny purebred versus half purebred and half
hybri.d). Mforeover, we cannot distinguish the hybrid from the purebred parent without information
about their parents and siblings.

AF[(yOO),(yOO)] [(yQO)iyOO).(yOO),(yOO)]
.4F[(g11),(gq11)] [(g11).(g11).(g11).(g11)]or

.4F[(g11).(glO)] , [(g11).(g10).(g11),(g10)]or

.4F['(q10),(g10)] = [(g11).(g10).(g10).(y00)]

Without pursuing all of the cases exhaustively, we see that there are ample opportunities for
disconfirming the Mendelian theory. if false. with a finite set of observations. Moreover. once
disconfirmed. additional observations could not resuscitate it. Hence the theory is FIT.

The FITness of the theory implies that its theoretical terms are eliminable [Simon, 1983). How
can this elimination be achieved? In the notation we have been using. (cxy) represents a pea that
is of (observable) color c., and has genes (theoretical terms) x and y. But the observations from
experiments that we have described above to identify the values of x and y can be used in reverse
to state the theory without reference to the theoretical terms. Let us sketch out how this can be
done.

Our goal is to construct a new theory that has the same predictive power as the theory stated
above but uses no theoretical terms (genes). Moreover, since the previous theory is deterministic.
the new theory's predictions must be precise. That is. the theory's predictions should not use any
logical or. For example. it is not enough for the new theory to state that -two green peas ui1. on
inbreeding, produce either four green peas or three green peas and one yellow pea.-

There are six possible different input/output cases of the theory:
(Notice that the notation here shows the genes only and we are using symmetry to treat (10)

and (01) as identical and indistinguishable.)

1. (00)(00) - (oo)(0o)(00)(0o)
2. (00)(10) - (01)(00)(01)(00)

3. (00)(11) - (01)(01)(01)(01)

4. (10)(10) - (11)(10)(01)(00)
5. (10)(11) -- (11)(11)(01)(01)

6. (11)(11) -. ( 1 ( 1 ( 1 ( 1

When color of peas is the only observable, these six cases can be classified into the following
five observably distinct classes because cases 5 and 6 (combined in class c) are indistinguishable by
colors alone. Notice that the notation now shows the color only.

a. (y)(y) - (y)(y)(y)(y)
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b. (y)(g) - (g)(y)(g)(y)

c. (y)(g) - (g)( g)(g)

d. (g)(g) - (g)(g)(g)(y)

C. (g)(g) - (g)( g)(g)

From the given information we cannot always predict the output (the right-hand side) of each
class from the input (the lefthand side) observation, for the inputs of classes b and c. and classes d
and e appear the same. Notice that if genes were observable these classes would be distinguishable
because the input (g) in class b is a hybrid (10). while the input (g) in class c is a purebred (11):
the input peas (g)(g) in class d are both hybrid while the input peas in class e are not. Thus our
first task is to define -purebred- and -'hybrid- in terms of observables.

A pea is purebred. (11) or (00). if its progeny. under inbreeding, are all a single color: green
(11) if it is green, yellow (00) if it is yellow. A pea is hybrid. (10). if its progeny. under inbreeding.
are three green and one yellow. Now "hybrid- and -purebred" are theoretical terms. but -parent-
and -offspring" are observable by keeping records of which peas were produced by which breedings.
Hence. at the expense of some complexity and awkwardness, we may replace 'hybrid- by -'plant
that on inbreeding produces three green and one yellow offspring," and "purebred" by -plant that
on inbreeding produces offspring all of its own color." These are observable properties. and we can
call peas. z. that satisf: the former or the latter criterion h-test(z) and p-test(x). respectively.

However. we must be a little cautious here. Since the reason for having a theory is to predict the
outcomes of inbreedings and crossbreedings. we cannot inbreed the input itself to find out whether
it is purebred or hybrid. Instead we must derive such conclusions from the history of previous
observations and the results of h-test and p-test applied to the siblings of the input.

If a pea is yellow, then it is a purebred. If a pea is green. then in order to be a purebred (11)
it must be produced. according to the theory. by two green peas in case 4. 5 or 6. In case 4. the
purebred's sibiings must be one yellow and two hybrids. In case 5. two of its siblings must be
hybrids and the other be purebred. In case 6. three of its siblings must be purebreds. Based on
these cases. we can define the predicate "purebred(x)- as follows:

purebrrd(x) yellou'(x)or
{y: are parents of x. u r u' are the si"iiiig, of X"

[green(y) A green(z) A yellow(u) A h-test(%v) A h-test(w)] or
[green(y) A green(z) A green(u) A p-test(u) A h-test(v) A h-test(w)] or
[green(y) A green(z) A p-test(u) A p-test(v) A p-test(w)]}

Once we have defined purebred. the predicate -hybrid(x)" can be defined simply as follows:
hybrid(x) --purebred(a)
With these predicates defined in terms of observables and relations among observables such as

parent and sibling, plus the five classes that were derived from the theory. it is straightforward to
construct a new theory that makes no reference to theoretical terms:

. AF[(y).(y)] (y)(y)(y)(y) (9)
AF[(y).(g)]Ahybri'd(g) (yl(y)(g)(g) (10)
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-A- .4F[(y),(g)] Apurebrfd(g) (g)(g)(g)(g) (11)

AF[(gl),(g2 )]Ahybrid(g1)Ahybrd(g2 ) > (g)(g)(g)(y) (12)

AF[(g1).(g2)]Apurebred(g1 ) =:, (g)(g)(g)(g) (13)

Notice that in the process of elimination. we have used not only relation predicates such as -par-
ent" and -sibling" to specify the relations between observables, but also the action (or measurement)
"inbreeding". Nothing similar occurred in the previous examples of theories where theoretical terms
were non-recursive. Here, if the action, inbreeding, were not allowed in the definition, we would
be unable to define the predicates -purebred- and "hybrid" without using genes. For in order to
know whether a pea is purebred one must to know something about its siblings or its parents.

5 Identifiability of Recursive Theoretical Terms

Recursive theoretical terms also cast some light on the identifiability of theoretical terms in general.
By definition, theoretical terms are those terms that are not directly observable but only derivable
from observables. For example., the voltage of a battery may be determined from measurements
of the current and resistance. the genes of peas may be determined from observations of the peas'
color. However. whether it is possible to compute the values of such terms solely on the basis of
given experiments and observables depends on the precise structure of the terms.

Lesniewski has proposed that definitions should satisfy two conditions. which P. Suppes [1957.
p.153] (quoted in [1970]) has described thus:

Two criteria which make more specific ... intuitive ideas about the character of defini-
tions are that (i) a defined symbol should always be eliminable from any formula of the
theory. and (ii a new definition does not permit the proof of relationships among the
old symbols which were previously unprovable: that is. it does not function as a creative
axiom.

Following Suppes, we will refer to these two criteria as eliminability and noncrfativity. Tarski [1956.
pp. 301-302] has proposed a concen' of definition which implies that defined terms are always
eliminable. The criteria of eliminability and noncreativitv stem from the idea that definitions are
mere notational abbreviations, allowing theory to be stated more compactly without changing its
content.

Subsequently, Simon [1970] proposed a somewhat weaker condition called gencra definability.
A term is generally definable by means of the other terms in a theory if. upon adding a sufficient
number of observations to the axioms, the system including these new propositions defines this
term in the sense of Tarski. It turns out that the axioms that define (in this generalized sense)
the theoretical terms serve both as definitions and laws, that is to say. they permit the theoretical
terms to be eliminated, but at the same time they are creative. We repeat Simon's axiomatization
of Ohm's law to illustrate this point.

r is a system of Ohmic observations iff there exist D. r. c. such that:

(1) I= (D.r.c):



(2) is a non-iempty set;

(3) r and c are functions from D into the real numbers;

(4) for all z E D.r(x) > 0 and c(x) > 0.

1' is an Ohmic circuit iff there exist D.r.c.b, and v such that:

(5) F'= (Dr,c.b.v)

(6) r = (D. r, c) is a system of Ohmic observations;

(7) v and b are real numbers:

(-) for all z E D.
[o]. c(z) = v/(b + r(z)).

In this system. r and c are the observables (they stand for the external resistance and the
current respectively), and b and r are theoretical terms (they stand for the internal resistance and
the voltage of the battery respectively). However, according to the method of Padoa [Tarski, 1956.
pp. 304-305. v and b are not. as they should be, definable in this system unless the following
additional condition is added:

(9) D contains at least two members with distinct values of c and r.

This condition is required for definability. because only after two such observations, (cl, rj) and
(c2.r 2 ). can b and v be uniquely defined, as follows:

[3]. b = (c 2 r2 - clr,)/(c - cl)

[]. r = c2c1(r 2 - rl)/(c, - c2 ).

Furthermore. if we subtitute these values for v and b in [o]. and substitute the third obi ation
(C3. r 3 ) for c(x) and r(r) respectively, then we obtain a relation anmong three pairs of obse~tions.
Thus. the -definition- (8) is now creative because this relation is required to hold among aiythree
pairs of observations.

This treatment is suitable for environments in which the values of theoretical terms depend only
on the values of observables regardless of when and in which order the measurements are made.
In the Ohmic circuit. for example. the values of b and v depend only on the values of the c's and
r's and do not change from one measurement to another, thus any two observations in the circuit
could serve for the definitions of b and r. Examining equations [3] and [-r]. we can see that no
theoretical terms appear on the right-hand sides of the equations. and the equations do not have a
sense of time.

In theories that contain recursive theoretical terms. the situation is more complex because
the values of theoretical terms can be different for different individuals even though the values of
observables for those individuals may appear the same. For example. in Mendel's experiments, the
values of m and f are different for (P 3 ) and (P,-) even though both peas are green. Furthermore.
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the Mendelian theory contains not only observations (colors) but also (observable) measurements
(inbreedings or cross breedings).

In general. recursive theoretical terms are not determined just by the current values of observ-
ables but by the history of the observations and the actions performed in order to make those
observations. For example. a pea is determined to be purebred by observations on its parents* and
siblings' colors, and by actions (inbreeding) on its siblings and their results. Therefore. it is not
clear whether in the general case there exist any particular sets of observations, as there do for
Mendel's theory. that permit the theoretical terms to be defined uniquely.

Formally, in order both to define and uze a set of theoretical terms T in a theory, the following
three functions might have to be specified:

E0: Computing T from observahles;
U(): Using T to determine the values of observables;
I(): Showing how T is inherited through actions.

The first function E() may depend on data for more than one generation for identification. In
the environment of Mendel's experiments, the constraints on the breeding relations between parents
and offspring provide a starting point for the recursive definitions. But there is no guarantee that
such starting points will exist for all theories containing recursive theoretical terms. If no E()
exists. then some of the theoretical terms may be unidentifiable, although still eliminable.

The second function, 1(), tells us how the theoretical terms are used at a particular point in
time. If U() exists, then the theoretical terms are meaningful because they determine, thus predict,
the values of observables. For example. in Mendel's experiments, a pea's m and f determine its
color.

Finally, the third function J() constitutes the core of the theoretical structure. for it tells us
how the theoretical terms are propagated through measurements and actions. Once we know the
function 1() and the current values of theoretical terms T, then we can use T to predict the
observables for all future points in time.

From this analysis. we can safely say that theoretical terms can be recursive, that is. defined by
how they are inherited through actions and observations. Although the values of theoretical terms
are derivable from the observables. within the structure of the theory they are propagated from
themselves. The presence of recursive terms in some theories adds an interesting dimension to the
topic of the eliminability and identifiability of theoretical terms.

6 Conclusion

In this paper, we have introduced recursive theoretical terms as a class of theoretical terms whose
values must be inferred from a history of observations. Although such terms may add much com-
plication, we have shown by the example of Mendelian genetics that theories containing them may
still be FIT. That is. such theories may be falsifiable and their recursive theoretical terms may be
eliminable, although the elimination process can be complex. Since recursive theoretical terms are
defined in terms of themselves through measurements (or actions), it is not obvious what classes of
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systems containing them Hill be FIT. The necessary and sufficient conditions for the eliminabilitv
and identifiability of recursive theoretical terms is an important topic for further study.
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